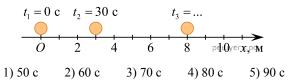
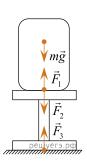
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Груз на пружине совершает гармонические колебания. Его ускорение в СИ измеряется в:

- 1) m/c
- 2) 1/c

- 3) m^2/c 4) m/c^2 5) m^2/c^2


2. На рисунке изображены положения шарика, равномерно движущегося вдоль оси Ox, в моменты времени t_1 , t_2 , t_3 . Момент времени t_3 равен:

3. Почтовый голубь дважды пролетел путь из пункта А в пункт В, двигаясь с одной и той же скоростью относительно воздуха. В первом случае, в безветренную погоду, голубь преодолел путь AB за промежуток времени $\Delta t_1 = 35$ мин. Во втором случае, при попутном ветре, скорость которого была постоянной, голубь пролетел этот путь за промежуток времени $\Delta t_2 = 30 \text{ мин.}$

Если бы ветер был встречный, то путь AB голубь пролетел бы за промежуток времени Δt_3 , равный:

- 1) 30 мин
- 2) 35 мин
- 3) 38 мин
- 4) 42 мин
- **4.** На невесомой подставке, стоящей на полу лежит груз массой m (см.рис.). На рисунке показаны: $m\vec{g}$ – сила тяжести; \vec{F}_1 – сила, с которой подставка действует на груз; \vec{F}_2 – сила, с которой груз действует на подставку; \vec{F}_{3} — сила, с которой пол действует на подставку. Какое из предложенных выражение в данном случае является математической записью третьего закона Ньютона?

- 1) $\vec{F}_1 = -m\vec{g}$ 2) $\vec{F}_2 = m\vec{g}$ 3) $\vec{F}_1 = -\vec{F}_2$ 4) $\vec{F}_2 = -\vec{F}_3$ 5) $\vec{F}_3 = -m\vec{g}$

5. К вертикальному борту хоккейной коробки подлетела шайба со скоростью, модуль которой $v_1 = 25 \, \frac{M}{c}$, и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $v_2 = v_1$. Если модуль изменения импульса шайбы при ударе о борт $|\Delta p|=8,0$ $\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{\mathrm{C}},$ то масса m шайбы равна:

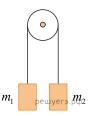
- 1) $80 \ \Gamma$ 2) $120 \ \Gamma$ 3) $160 \ \Gamma$ 4) $240 \ \Gamma$

6. Шар объемом V = 14,0 дм³, имеющий внутреннюю полость объёмом $V_0 = 13,0$ дм³, плавает в воде $\rho_1 = 1,0 \cdot 10^3 \text{ кг/м}^3$, погрузившись в нее ровно наполовину. Если массой воздуха в полости шара пренебречь, то плотность ρ_2 вещества, из которого изготовлен шар, равна:

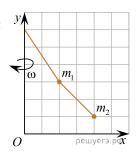
 $\mathit{Примечаниe}.$ Объём V шара равен сумме объёма полости V_0 и объёма вещества, из которого изготовлен шар.

- 1) $2.5 \cdot 10^3 \text{ kg/m}^3$ 2) $4.0 \cdot 10^3 \text{ kg/m}^3$ 3) $5.5 \cdot 10^3 \text{ kg/m}^3$ 4) $7.0 \cdot 10^3 \text{ kg/m}^3$ 5) $8.5 \cdot 10^3 \text{ kg/m}^3$

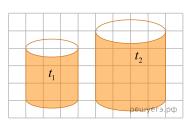
7. Число N_1 атомов титана $\left(M_1=48\ \frac{\Gamma}{_{
m MOЛЬ}}
ight)$ имеет массу $m_1=2\ \Gamma,\,N_2$ атомов углерода $\left(M_2=12\ \frac{\Gamma}{_{
m MOЛЬ}}
ight)$ имеет массу $m_2 = 1$ г. Отношение $\frac{N_1}{N_2}$ равно:

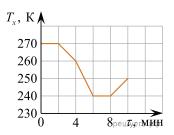

1)
$$\frac{1}{4}$$
 2) $\frac{1}{2}$ 3) 1 4) 2 5) 4

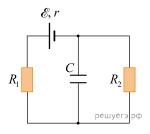
- **8.** Число молекул $N=1,7\cdot 10^{26}$ некоторого вещества ($\rho=8,9$ г/см $^3,M=64$ г/моль) занимает объем V, равный:
 - 1) 0,50 дм^3 2) 1,0 дм^3 3) 1,5 дм^3 4) 2,0 дм^3 5) 3,0 дм^3

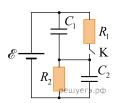

- 9. С идеальным газом, количество вещества которого постоянно, проводят изобарный процесс. Если объём газа увеличивается, то:
 - 1) к газу подводят теплоту, температура газа увеличивается
 - 2) теплота не подводится к газу и не отводится от него, температура газа уменьшается
 - 3) теплота не подводится к газу и не отводится от него, температура газа постоянна
 - 4) теплота не подводится к газу и не отводится от него, температура газа увеличивается
 - 5) от газа отводят теплоту, температура газа уменьшается
 - 10. На рисунке приведено условное обозначение:

- 1) электрического звонка
- 2) гальванического элемента 5) вольтметра
- 3) амперметра
- 4) реостата
- 11. Спортсмен, двигаясь прямолинейно, пробежал дистанцию длиной l = 96 м, состоящую из двух участков, за промежуток времени $\Delta t = 11$ с. На первом участке спортсмен разгонялся из состояния покоя и двигался равноускоренно в течение промежутка времени Δt_1 = 6,0 с. Если на втором участке спортсмен бежал равномерно, то модуль скорости υ спортсмена на финише равен ... $\frac{M}{C}$.
- 12. Два небольших груза массами $m_1 = 0.17$ кг и $m_2 = 0.29$ кг подвешены на концах невесомой нерастяжимой нити, перекинутой через неподвижный гладкий цилиндр. В начальный момент времени оба груза удерживали на одном уровне в состоянии покоя (см. рис.). Через промежуток времени $\Delta t = 0,60$ с после того как их отпустили, модуль перемещения $|\Delta \vec{r}|$ грузов друг относительно друга стал равен ... см.


- 13. Автомобиль, двигавшийся со скоростью \vec{v}_0 по прямолинейному горизонтальному участку дороги, начал экстренное торможение. На участке тормозного пути длиной $s=30~\mathrm{M}$ модуль скорости движения автомобиля уменьшился до $\upsilon = 10,0~\frac{\rm M}{c}$. Если коэффициент трения скольжения между колесами и асфальтом $\mu = 0,50$, то модуль скорости υ_0 движения автомобиля в начале тормозного пути равен ... $\frac{\mathrm{M}}{c}$
- 14. Вокруг вертикальной оси Оу с постоянной угловой скоростью с вращаются два небольших груза, подвешенных на лёгкой нерастяжимой нити. Верхний конец нити прикреплён к оси (см. рис.). Если масса второго груза $m_2 = 44$ г, то масса первого груза m_1 равна ... г. Примечание. Масштаб сетки вдоль обеих осей одинаков.


15. В вертикально расположенном цилиндре под легкоподвижным поршнем, масса которого m = 14,00 кг, а площадь поперечного сечения S = 20,0 см², содержится идеальный газ (см. рис.). Цилиндр находится в воздухе, атмосферное давление которого p_0 = 100 кПа. Если начальная температура газа и объем T_1 = 270 К и V_1 = 3,00 л соответственно, а при изобарном нагревании изменение его температуры ΔT = 180 К, то работа A, совершенная силой давления газа, равна ... Дж.

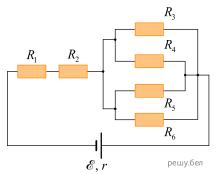

16. Два однородных цилиндра (см. рис.), изготовленные из одинакового материала, привели в контакт. Если начальная температура первого цилиндра $t_1 = 6$ °C, а второго — $t_2 = 97$ °C, то при отсутствии теплообмена с окружающей средой установившаяся температура t цилиндров равна ... °C.


17. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}$ = 527 °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.

- **18.** Если в результате радиоактивного распада число N_0 ядер изотопа некоторого вещества уменьшилось в k=16 раз за промежуток времени $\Delta t=32$ сут, то период полураспада $T_{1/2}$ этого вещества равен ... **су**т.
- **19.** Электрическая цепь состоит из источника постоянного тока, конденсатора ёмкостью C=6,0 мкФ и двух резисторов, сопротивления которых $R_1=R_2=5,0$ Ом (см. рис.). Если внутреннее сопротивление источника r=2,0 Ом, а заряд конденсатора q=180 мкКл, то ЭДС источника тока ϵ равна ... **B**.

- **20.** Сила тока в проводнике зависит от времени t по закону I(t) = B + Ct, где B = 8,0 A, C = 0,50 A/c. Чему равен заряд q, прошедший через поперечное сечение проводника в течение промежутка времени от $t_1 = 2,0$ с до $t_2 = 6,0$ с? Ответ приведите в кулонах.
- **21.** На дне сосуда с жидкостью, абсолютный показатель преломления которой n = 1,50, находится точечный источник света. Если площадь круга, в пределах которого возможен выход лучей от источника через поверхность жидкости, S = 740 см², то высота h жидкости в сосуде равна ... **мм**. Ответ округлите до целых.
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=40$ мкФ, $C_2=120$ мкФ, ЭДС источника тока $\epsilon=90,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

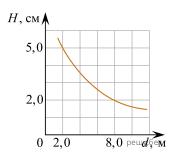
- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** Парень, находящийся в середине движущейся вниз кабины панорамного лифта торгового центра, встретился взглядом с девушкой, неподвижно стоящей на расстоянии D=8,0 м от вертикали, проходящей через центр кабины (см. рис.). Затем из-за непрозрачного противовеса лифта длиной l=4,1 м, движущегося на расстоянии d=2,0 м от вертикали, проходящей через центр кабины, парень не видел глаза девушки в течение промежутка времени $\Delta t=3,0$ с. Если кабина и противовес движутся в противоположных направлениях с одинаковыми по модулю скоростями, то чему равен модуль скорости кабины? Ответ приведите а сантиметрах в секунду.


- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10,0 \text{ Om}.$$


В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.

- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm c}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_{\rm Л}=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4\ \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм. **Примечание.** Карандаш расположен перпендикулярно главной оптической оси линзы.

